Welcome to Magna Chek, Inc.

- Magna Chek, Inc. is your full service source for Non-Destructive Testing, specializing in Magnetic Particle, Dye Penetrant, Ultrasonic, Radiography, Eddy Current, hardness inspections, and visual sorting. Magna Chek also provides NDT training, certification, calibration, blasting, and trucking services. For your convenience, Magna Chek offers both on-site inspection or in-house inspections at two opportune locations. With extremely competitive prices and a quick turnaround time, Magna Chek, Inc. proudly accepts high-volume or low-volume quantities, making them the premier source for all of your NDT inspection needs.
WE MATCH THE INSPECTION PROCESS TO THE PART FOR ACCURATE RESULTS

- Destructive testing of sample parts can indicate possible trouble in your production process. However, when each piece you produce has to maintain in-service effectiveness then the risk of critical part failure becomes significant. That’s where Magna Chek can help.

- With two Detroit-area facilities, Magna Chek combines technology, experience and thoroughly trained personnel to meet the most demanding inspection requirements. We use appropriate NDT inspection procedures to find all the anomalies in a part, including those that might not be visible to the unaided eye.

- Whether you have one part or one million, whether your parts are 12 inches or 12 feet long, Magna Chek can test for surface and sub-surface discontinuities and deliver accurate results each time.
OVERVIEW

- NDT Services
- Training/Certifications
- Equipment Sales
- Blasting
- Calibration/Trucking
- Accreditations
- Affiliations
- We cater to our customers
- Credit Card Authorization Form
- CONTACT US
SERVICES WE OFFER

NDT
- Magnetic Particle
- Radiography
 - X-ray with film
 - Real-time X-ray
- Ultrasonics
- Dye Penetrant
- Eddy Current
- Hardness
- Visual Sorting

Miscellaneous
- Inspectin Training
- Inspection Certification
- Consulting
- Equipment Sales
- Blasting
- Calibration
- Trucking
Magnetic Particle Inspection

Magnetic particle testing uses electrically induced magnetic fields in parts made from ferromagnetic materials to detect flux leakage at the site. Primarily used for surface and sub-surface defects. The speed and relative simplicity of this technology make it ideal for high volume applications.

While limited to examining parts made from iron and steel which are strongly affected by magnets (ferromagnetic), magnetic particle testing is, none the less, very useful for detecting minute surface and near-surface cracks down to a depth of about 0.100”.

A magnetic field is induced in the test specimen, which is then “dusted” with iron particles, either dry or in a liquid suspension. The particles will collect along the edges of any cracks or other discontinuities that distort the induced magnetic field to provide a readily visible indication of the flaw.

High volume applications
Magnachek is equipped to perform magnetic particle testing on a wide variety of parts in terms of both size and geometry. Testing is provided on a single part or on large lots at rates up to 1,500 parts per hour.

12 ft Wet Magna-Glo Unit: our 6,000 amp wet magna glo unit with a secondary 2,000 amp coil accommodates parts from 1” to 12’ long and up to 24 inches in diameter. The production rate is approximately 1,000 pieces per hour. Utilization of the secondary coil operation allows us to perform head and coil inspection simultaneously.

Conveyorized Two-Shot Magna-Glo Unit: with an automatic coil, demagnetizer and conveyor handles up to 1,500 pieces per hour and is ideal for high volume parts such as bolts and screws, etc.

Conveyorized Duo-VEC Wet Magnetic Particle Inspection: induces a multivector field in the part to detect both longitudinal and transverse defects. This specially designed unit is ideal for irregular part configurations up to 24” long such as connecting rods, steering arms, yokes, suspension components, small forgings and castings.

Magnetic Particle Applications:
- Preventative maintenance
- Corrosion surveys
- On stream inspection
- In process inspection
- In-service fatigue testing

Mobile magnetic particle units
These units may be equipped with a wide variety of NDT units as required by the customer: Magnetic Particle AC and DC units up to 4,000 amps, Penetrant equipment and materials capable of fluorescent and constant dye inspection, portable ultrasonic and X-ray equipment. Combining this equipment, we can schedule a multiple approach to your materials, and discover both surface and sub-surface discontinuities. We are available for on-site inspection of power generating turbines, boilers, pressure, vessels, structural weld joints, crane assemblies and hooks, handling equipment and pipelines.
Sub-surface discontinuities are detected by transmitting X-rays or Gamma rays through a material to a film on the opposite side of the piece being tested. Radiography works on both ferrous and non-ferrous materials.

Magna Chek has several Radiographic capabilities: X-Ray, Real Time X-Ray, Gamma Ray and Mobile NDT units. Whatever your needs, Magna Chek can assist you with them.

X-ray:

With Magna Chek’s 200 and 300 kilovolt x-ray units, maximum thickness penetration is 2.5 inches of steel. But it offers an even greater thickness penetration when inspecting aluminum, plastics, ceramics and other certain materials, depending on their density.

We have a 12x12 foot exposure room with a sliding lead doorwall that is capable of inspecting very large pieces. Testing in this room uses the 300 kilovolt x-ray unit for maximum penetration and greater versatility. With this large exposure room we can test a wide variety of large parts such as steering components, aircraft assemblies, armored vehicles, turrets and more. We can also test large lot sizes of castings, forgings, solid state components, etc.

Real Time X-Ray:

Magna Chek uses the BI-VISION video digital image processing system. This system sets the standard for industrial real time x-ray image enhancement. With its high resolution, speed and advanced image manipulation features, the BI-VISION system provides quick and accurate detection of the most subtle defects from the x-ray image up to 2.5 inches of steel. This system provides a wide range of image processing functions that are easily accessed through the touch screen menus. Features include frame averaging, recursive frame averaging, contrast, black and white levels adjusting, image overlay labeling and pseudo color. A range of 2 to 264 frames of video can be integrated and average to reduce white noise caused by x-ray scatter. Image convolution features include image sharpening, smoothing, edge detection, edge enhancing and more.
Gamma Ray:
With Magna Chek’s Gamma Ray unit, we increase penetration capabilities up to 3.5 inches of steel. Gamma ray units do not require power because of the Iridium isotope, which makes them ideal for inspecting remote items such as pipelines, bridges, etc.

Mobile NDT Units:
Can’t come to us? Then Magna Chek will come to you. Our units can be equipped with 200 or 300 kilovolt X-Ray machines or Gamma ray units – whatever your spec requires. On site development, interpretation and reporting are standard with Magna Chek. These units are available for on-site inspection of power generating turbines, boilers, pressure vessels, bridges, crane assemblies and much more.

Radiography Applications:
- 200 and 300 Kilovolt Units Applications:
- Aircraft Structures and Components
- Welded Assemblies
- Pressure Vessels and Piping
- Electronic Circuitry
- Bridge Girders
- Similar Materials
- Gamma Ray Applications:
- Pipelines
- Bridge and Building Fabrications
- Pressure Vessels
- Large Forgings and Castings
- Armored Vehicle Components
Ultrasonic Inspection

Ultrasonic inspection involves the transmission of ultra-high frequency sound waves through the part being tested and evaluating the reflected waves on a time delay oscilloscope. It is useful for detecting sub-surface discontinuities, dimensional measurements (thickness) and analyzing material structure. In a typical pulse/echo ultrasonic inspection system, a transducer in contact with the test specimen generates high frequency ultrasonic energy that travels through the test specimen in the form of waves. The waves reflect back to the transducer off the opposite wall of the specimen. Any discontinuity in the path of the waves—a crack or inclusion, for example—will reflect part of the energy back to the transducer. The reflected wave is transformed into an electrical signal by the transducer and displayed on an oscilloscope. Typically, the strength of the reflected signal is plotted against the elapsed time from signal generation (pulse) to the moment the reflected signal (echo) is received. Signal travel times can be converted to the distance traveled, which can yield information on the location, size and orientation of the discontinuity.

Immersion testing provides inspection alternatives

Contact ultrasonic inspection is somewhat limited as to the size of discontinuities it can detect—generally no less than one millimeter. To locate smaller defects, immersion testing, where both the test specimen and transducer are immersed in a tank of water, is frequently used. However, because the sound waves are traveling through a second medium—water—before entering the test specimen there are additional echoes to interpret that is best done by a skilled operator.

Ultrasonic inspection is versatile

With both contact and immersion methodologies available, ultrasonic inspection is used for a wide variety of applications. It is frequently used to check weld quality on containment vessels and the integrity of aircraft wing and tail attachments.

Ultrasonic Applications:
- Structural Weldments
- Ship Hull Thickness
- Corrosion Surveys
- Weld Quality
- Aircraft Wing and Tail Attach Fittings
- Wheel Rim and Bead Seat Areas
- Gears and Shafts
- Forgings
- Some Castings
Dye Penetrant Inspection
Dye penetrant inspection is a means of locating fine cracks on the surface of parts by allowing a visible or fluorescent dye to accumulate in any such discontinuity to reveal its shape and location. The technique is applicable to virtually any non-porous material. Dye penetrant inspection is a three-step process beginning with the application of a visible or fluorescent dye to the clean, dry surface of the test specimen. In a short time the penetrant is drawn into any surface depressions or voids by capillary action. After a pre-determined interval the excess penetrant is removed and a developing agent is applied to the surface. The developing agent draws the remaining penetrant out of the cracks to make them readily visible to an inspector. This technique can be used to detect surface flaws on essentially any non-porous material.

Displaying the cracks
In products such as a casting, cracks are made visible with contrast dye penetrant procedures. Not easily seen by the eye, the contrast dye (and developer) makes the piece and its anomaly visible enough to be photographed under harsh light.

Experience counts
A number of factors will affect the dye penetrant inspection process including the material, the type of defect to be found, and the surface condition of the parts before testing. All of these factors must be considered when determining surface preparation requirements, which penetrants and developers to use, and processing times. Magna Chek’s experienced personnel can tailor the inspection process to meet your exact needs.

Ideal for on-site inspections
High-volume dye penetrant inspection operations for castings, forgings and many other parts are common because of its simplicity and relative low cost. The technology, however, is easily implemented in remote locations to check the integrity of welds in fabricated structures or for locating stress cracks on aircraft.

Dye Penetrant Applications:
- Weldments
- Castings
- Forgings
- Turbine Housings
- Airplane Parts
- Many Non-Ferrous Metallic Materials
Eddy Current Inspection

Eddy current testing is an electromagnetic technique used on conductive materials to detect a number of conditions, including sub-surface defects, variations in material structure, thickness and corrosion. When an energized coil is brought near to the surface of a metal component, eddy currents are induced into the specimen. These currents create a magnetic field that tends to oppose the original magnetic field. Sub-surface defects will distort the eddy currents and alter the opposing magnetic field. By measuring how the impedance of the coil in close proximity to the specimen is affected by variations in the magnetic field, a skilled operator can precisely locate and classify sub-surface defects.

Eddy currents are subject to a "skin effect", meaning they flow in a thin skin beneath the surface adjacent to the coil. The thickness of this skin is determined by the operating frequency of the coil (usually 10Hz to 10Mhz) plus the conductivity and permeability of the material under inspection. Eddy current inspection is effective when the skin is as thin as 5μm or as thick as 10μm or more. By altering the operating frequency of the coil it possible to evaluate a specimen at various depths.

Eddy current inspection is a non-contact procedure that is unaffected by the presence of oils, paints and coatings on the test specimen. This greatly reduces preparation time prior to inspection. Frequently used for on-site inspection for corrosion in heat exchangers tubes, eddy current testing is very fast — making it ideal for high volume sorting of small parts for flaws, size variations and material anomalies.

Eddy Current Applications:

- Crack detection
- Non-conductive coating measurement
- Heat exchanger tube examinations
- Thickness measurements of thin materials
- Corrosion thinning
- Conductivity measurements
- Verification of heat treatment
- Boiler tube assessment
- Condensers
- Remote Field Testing (ferromagnetic materials)
- Tank inspections
- Thickness of plating or cladding
Hardness Testing

Hardness is defined as the "Resistance to Deformation". When doing a hardness test, the hardness tester applies a fixed load and the depth of penetration is measured by different means and converted to different units. More simply put, when using a fixed force (load) and a given indenter, the smaller the indentation, the harder the material. Indentation hardness value is obtained by measuring the depth or the area of the indentation using one of over 12 different test methods.

However, the term may also refer to stiffness or temper, or to resistance to scratching, abrasion, or cutting. It is the property of a metal, which gives it the ability to resist being permanently, deformed (bent, broken, or have its shape changed), when a load is applied. The greater the hardness of the metal, the greater resistance it has to deformation.

Why do a hardness test?

Easy to perform
Quick - 1 to 30 seconds
Relatively inexpensive
Non-destructive
Finished parts can be tested - but not ruined
Virtually any size and shape can be tested
Practical QC device - incoming, outgoing

The most common uses for hardness tests is to verify the heat treatment of a part and to determine if a material has the properties necessary for its intended use. Establishing a correlation between the hardness result and the desired material property allows this, making hardness tests very useful in industrial and R&D applications.

Hardness Applications:

- Cemented carbides
- Thin steel
- Shallow case hardened steel
- Cooper alloys
- Soft steel
- Aluminium alloys
- Malleable iron
- Steel
- Hard cast iron
- Perlite malleable iron
- Titanium
- Deep case hardened steel
- Thin steel
- Medium case hardened steel
- Perlite malleable iron
- Cast iron
- Aluminium alloys
- Magnesium alloys
- Bearing metals
- Annealed copper alloys

\begin{tabular}{|l|l|}
\hline
\textbf{Hardness Applications:} & \textbf{Hardness Applications:} \\
\hline
- Thin soft sheet metal & - Thin soft sheet metal \\
- Phosphor bronze & - Phosphor bronze \\
- Beryllium & - Beryllium \\
- Cooper & - Cooper \\
- Malleable iron & - Malleable iron \\
- Zinc & - Zinc \\
- Lead & - Lead \\
- Aluminum & - Aluminum \\
- Bearing metals & - Bearing metals \\
- Relatively soft thin materials & - Relatively soft thin materials \\
- Plastics & - Plastics \\
- Very thin sheet metal & - Very thin sheet metal \\
- Strip metal & - Strip metal \\
- Wire & - Wire \\
- Small rounds & - Small rounds \\
- Nitrided steel & - Nitrided steel \\
- Lightly carburized steel & - Lightly carburized steel \\
- Heavily cyanided steel & - Heavily cyanided steel \\
- Tin plate & - Tin plate \\
- Other similarly configured specimens or materials & - Other similarly configured specimens or materials \\
\hline
\end{tabular}
NDT TRAINING

Level I & Level II
Magna Chek can train your personnel to perform magnetic particle inspection.
Our training courses provide basic knowledge into how to effectively perform magnetic particle inspection. Emphasis is placed on the properties of electricity and magnetism, understanding longitudinal and circular magnetism, use of central conductor, coil and direct magnetization equipment and the use of yokes and prods. Magnetic Particle Inspection involves the magnetization of a component, followed by the application of ferromagnetic particles. The particles align along discontinuities in the surface, or shallow sub-surface discontinuities. This method is used to test welds, castings, and forgings for surface or sub-surface defects; however it can only be used on ferromagnetic metals. We can provide Magnetic Particle training suitable for ASNT Level 1 & 2. Below is an example of a syllabus that is used for Magnetic Particle training courses (we can make changes to a syllabus to satisfy the requirements of a specific written practice if necessary).

Level 1:
General Theory:
• Principles of Magnetic Particle Inspection
• Methods of Magnetization
• Inspection and Detection of Indications
• Checks and Calibrations
• Equipment
• Test Procedures
• Detectability of Defects
• Standards and Specifications
• Safety Precautions

Specific Theory:
Application of the Method and use of Codes, Specifications and Procedures, applicable to the Company, including the relevant control checks.

Level 2:
In addition to Level 1:
General Theory:
• Testing Procedures
• Detectability of Defects
• Interpretation and Reporting
• Post Test Procedures
• Basic Production - Crude and Finished Products
• Basic Casting Production Methods - Finished Products
• Wrought Products Forming Processes
• Basic Welding Processes
• Safety Precautions

Specific Theory:
Application of the Method to the Specific requirements of the Company, in particular making reference to those Codes, Specifications and Procedures used by the Company, including the relevant control checks.
In need of NDT equipment?

NEW AND USED NDT EQUIPMENT

Magna Chek, Inc. offers a full variety of new and used NDT equipment. From full production magnetic particle machines to custom built eddy current units. Magna Chek has the resources, capabilities and inventory of used equipment to fill your needs.

Magna Chek, Inc. can custom build your equipment to fit your exact needs and requirements. Call today for specs and pricing.

Magnetic Particle
Dye Penetrant
Ultrasound
Eddy Current
and more.....

SPECTROLINE PRODUCTS

Magna Chek, Inc. is a proud Michigan distributor of Spectroline products. Call 248-597-0089 today for a quote and delivery.
Blasting

Full Service Turn Key Blasting

Magna Chek has been a leader in parts blasting for nearly three decades. With clients representing Automotive, Defense and many others, Magna Chek has the knowledge, capacity and quality driven processes to clean even the most rigid of cleaning. Magna Chek offers two distinct categories of blasting processes; Tumble Blast and Spinning Hanger Blast, along with Sand and Glass Blasting. All process parts batch by batch, in a stop-start operation. The following applications can be processed:

- De-sanding and de-coring of castings
- De-scaling of castings, forgings and heat treated parts
- Shot peening (without process security)
- De-burring of plastic and rubber parts

Hanger Blasting

- Hanger Type machines are the most flexible machine types. They are split into Batch Type Machines where one batch of parts moves in, starts rotating, gets blasted and moves out, and Continuous Type Machines where the machines are equipped with a monorail system that moves the parts continuously through the machine. In both machine types, the parts get blasted with various numbers of blast wheels depending on the size of the parts and the cleaning requirement.

Tumble Blasting

- Tumble Blast machines are most commonly used for bulk, tumble proof material. Magna Chek has the diversity of equipment for de-sanding and de-coring castings and for de-scaling forgings or heat-treated parts. The parts are continuously tumbled during the blasting process. Magna Chek’s expertise enables the development of customized solutions which can include automatic loading/unloading of parts and removal of abrasive residues from the part.
CALIBRATION AND REPAIRS

Magna Chek can also do simple to sophisticated repairs on all MPI machines and equipment.

Having the unique ability to custom build equipment to our customer specifications, it has enabled Magna Chek to have a full understanding and practical knowledge to make repairs and calibrations. Even to the most strict of specifications. With 40 years of experience Magna Chek offers and brings a breadth of knowledge and insight into every calibration and repair no matter the size.

TRUCKING SERVICES

Magna Chek also has a large fleet of trucks to accommodate any loads. From flatbed trucks up to 42,000 lbs semi’s, Magna Chek can be your full time source for blasting and material transport. Our trucks are always ready and will arrive on time without compromising part safety or quality. Whether it be local pickup/delivery or over the road hauls, Magna Chek can is your carrier of choice. We can save money and precious time by utilizing our truck fleet for you. Our fleet can do weekly, monthly or daily part runs for our customers to minimize wasted time and energy to them. With a selection of truck sizes we can accommodate any load.
ACCREDITATIONS

Magna Chek is a Nadcap and ISO 17025:2005 accredited laboratory.

Magna Chek is an accredited laboratory that undergoes regular inspection by certified bodies that ensure that our practices are acceptable, to prove that we are competent to test your materials, and to ensure that we provide suitable quality assurance.

We are Nadcap and ISO 17025 certified and equipped to handle high-volume magnetic particle inspection programs to meet the needs of the automotive metal casting and metal fabricating industries.
The **Nadcap** Accreditations was created in 1990 by SAE Inc., Nadcap is administered by the not-for-profit Performance Review Institute. PRI exists to advance the interests of the mobility and related industries through development of performance standards and administration of quality assurance, accreditation, and certification programs as well as related activities for the benefit of industry, government, and the general public. PRI works closely with industry to understand their emerging needs and offers customized solutions in response.
NADCAP ACCREDITATION

In accordance with SAE Aerospace Standard AS7003, to the revision in effect at the time of the audit, this certificate is granted and awarded by the authority of the Nadcap Management Council to:

Magna Chek Inc
32701 Edward Ave
Madison Heights, MI 48071
United States

This certificate demonstrates conformance and recognition of accreditation for specific services, as listed in www.eAuditNet.com on the Qualified Manufacturers List (QML), to the revision in effect at the time of the audit for:

NonDestructive Testing

Certificate Number: 9944142177
Expiration Date: 31 January 2013

Joseph G. Pinto, Vice President and Chief Operating Officer

Performance Review Institute (PRI) 161 Thorn Hill Road Warrendale, PA 15086-7527
The ISO/IEC 17025:2005 is the standard used as the basis for accreditation of calibration and testing laboratories. It details all the requirements with which a calibration or testing laboratory must comply in order to demonstrate technical competence, effective management of a quality system and the ability to generate results that are technically valid.
Certificate of Accreditation

Perry Johnson Laboratory Accreditation, Inc. has assessed the Laboratory of:

Magna Chek, Inc.
3201 Edward Avenue, Madison Heights, MI 48071

ISO/IEC 17025:2005

Certification in accordance with the requirements of the recognized International Standard.

Magnetic Particle Testing of Ferrous Metals; Radiography of Metallic and Composite Materials; Field and In-House Ultrasonic Material Testing; Eddy Current Material Inspection

Accreditation claims for such testing must be verified and the organization must be subject to the normal rules governing the Accreditation body’s code of ethics and comply with the said rules.

For PJA:

Tracy Simpson
President/Operations Manager
Perry Johnson Laboratory Accreditation, Inc. (PJA)
375 W. Big Beaver Rd. Suite 3027
Troy, Michigan 48084

Page 1 of 2
WARREN LOCATION ISO ACCREDITATION

Certificate of Accreditation

Perry Johnson Laboratory Accreditation, Inc. has assessed the Laboratory of:

Magna Chek, Inc.
2125 Riggs Avenue, Warren, MI 48091

With the following scope:

Magnetic Particle Testing of Ferrous Metals’ Field and In-House Ultrasonic Material Testing: Liquid Penetrant Material Inspection

This accreditation is granted to the facility to perform the following testing:

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetic Particle Inspection</td>
<td>Surface and Subsurface Indications</td>
</tr>
<tr>
<td>Ultrasonic Testing</td>
<td>Surface and Subsurface Indications</td>
</tr>
<tr>
<td>Liquid Penetrant Examination</td>
<td>Surface and Subsurface Indications</td>
</tr>
</tbody>
</table>

For PHLA:

Troy Gassman
President/Operations Manager
Perry Johnson Laboratory Accreditation, Inc. (P.L.A.)
755 W. Big Beaver, Suite 1725
Troy, Michigan 48094

[Signature]

The validity of this certificate is maintained through ongoing assessments based on a continuous accreditation cycle. The validity of this certificate should be confirmed through the HIA website: www.hlaci.com

Page 1 of 2
AFFILIATIONS

Magna Chek is proud to be a member or partner of several Non-destructive testing organizations.

ASTM International is one of the largest voluntary standards development organizations in the world - a trusted source for technical standards for materials, products, systems, and services. Known for their high technical quality and market relevancy, ASTM continues to play a leadership role in addressing the standardization needs of the global marketplace.

The American Society for Nondestructive Testing promotes NDT education, research and the exchange of technical information. ASNT is also a diverse and dynamic family of professionals representing NDT technicians, engineers, researchers, vendors and academicians. All of whom are dedicated to improving product safety and reliability. These specialists and their companies represent virtually every industry and discipline benefiting from NDT.
WE CATER TO OUR CUSTOMERS NEEDS

Magna Chek, Inc. Non Destructive Testing Services, *the largest North American Non Destructive Testing Laboratory*, has been in business for over 40 years. We have served the aerospace, alternative energy and automotive industries with outstanding testing services, including mass production Magnetic Particle Testing, Ultrasound, Liquid Penetrant, Radiography, and Visual Inspection Services.

Magna Chek has provided controlled shipping services, salvage operations, special reporting, special inspections, and trucking services to those same industries. These services have aided the operation to continuously meet the expectations of their customers.

Here at Magna Chek we are continually investigating other opportunities to support the Non-destructive Testing Industry and interested in addressing any of customers present and/or future needs.
CREDIT CARD AUTHORIZATION FORM

One Time Credit Card Payment Authorization Form

Sign and complete this form to authorize Magna Chek, Inc. to make a one time debit to your credit card listed below.

By signing this form you give us permission to debit your account for the amount indicated on or after the indicated date. This is permission for a single transaction only, and does not provide authorization for any additional unrelated credits or debits to your account.

Please complete the information below:

I authorize Magna Chek, Inc. to charge my credit card account indicated below for _______ on or after _______. This payment is for _______.

(description of goods/services)

Company: ____________________________
Billing Address ____________________________
City, State, Zip ____________________________
Phone# ____________________________
Email ____________________________

Account Type: □ Visa □ MasterCard □ AMEX □ Discover

Cardholder Name ____________________________
Account Number ____________________________
Expiration Date ____________________________
CVV2 (3 digit number on back of Visa/MC, 4 digits on front of AMEX) ____________________________

SIGNATURE ____________________________ DATE ____________________________

I authorize the above named business to charge the credit card indicated in this authorization form according to the terms outlined above. This payment authorization is for the goods/services described above, for the amount indicated above only, and is valid for one time use only. I certify that I am an authorized user of this credit card and that I will not dispute the payment with my credit card company, so long as the transaction corresponds to the terms indicated in this form.
Contact us TODAY

Magna Chek, Inc
32701 Edward Ave
Madison Heights, MI 48071

248-597-0089 Phone
248-597-0440 Fax
800-582-8947 Toll Free

Email us:
Accounting: acct@magnacheck.com
HR: hr@magnacheck.com
Production: production@magnacheck.com
Sales Rep: sales@magnacheck.com
QC: qc@magnacheck.com

Visit our Website WWW.MAGNACHEK.COM